
XXIII Topologie et probabilités

XXIII.A Questions de cours :
1. Soit A une partie de E, montrer que d(·, A) est 1-lipschitzienne.
2. Caractérisation de la continuité des applications linéaires
3. Démontrer la caractérisation de la continuité par les images réciproques des ouverts.

XXIII.B Exercices topologie :

Exercice 1: *

Montrer que la distance d’un élément x ∈ E à A est nulle si et seulement si x ∈ A.

Exercice 2: *** Sous-groupes de R

Soit H un sous-groupe de (R,+) non réduit à {0}.
1. Justifier l’existence de m = inf{x ∈ H;x > 0}.
2. On suppose que m > 0. Démontrer que m ∈ H puis que H = mZ.
3. On suppose que m = 0. Démontrer que H est dense dans R.

Exercice 3: ** Deux topologies violemment différentes / deux normes violemment
non équivalentes

Soit E = C([0, 1],R) et F = {f ∈ E; f(0) = 0}.

1. On munit E de la norme ∥f∥∞ = supx∈[0,1] |f(x)|. Démontrer que F est fermé dans (E, ∥ ·
∥∞).

2. On munit E de la norme ∥f∥1 =
∫ 1

0
|f(x)| dx. Démontrer que F est dense dans (E, ∥ · ∥1).

3. En déduire que les normes ne sont pas équivalentes

Exercice 4: *** Densité des matrices diagonalisables dans Mn(C)

Notons Dn(C) l’ensemble des matrices diagonalisables dans C, et Tn(R) l’ensemble des matrices
trigonalisables dans R. Alors Dn(C) = Mn(C) et Dn(R) = Tn(R).

Si l’élève n’a pas encore vu le cours sur la diagonalisation, trigonalisation il admettre que toute
matrice est trigonalisable sur C.

Exercice 5: ** Densité de GLn(R) dans Mn(R)

On munit Mn(R) de la norme ∥·∥∞ qui associe à une matrice le maximum des sommes des valeurs
absolues des éléments de chaque ligne de la matrice. Montrer que GLn(R) est un ouvert dense de
Mn(R).
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XXIII.C Exercices probabilités :

Exercice 6: *** Formule de Wald

Soit (Xn)n∈N∗ une suite de variables aléatoires mutuellement indépendantes, de même loi et à
valeurs dans N. Soit T une variable aléatoire à valeurs dans N et indépendantes des précédentes.
On note GX la fonction génératrice commune à toutes les Xn.
Pour n ∈ N et ω ∈ Ω, on pose Sn(ω) =

∑
k = 1nXk(ω) et S0(ω) = 0, puis S(ω) = ST (ω)(ω).

1. Montrer que GS = GT ◦GX .
2. En déduire que si T et les Xn admettent une espérance finie alors S aussi et E[S] =

E[T ]E[X1]

Exercice 7: ** Loi des moments faible

Soit X une variable aléatoire à valeurs dans {0, . . . , n− 1}.
Montrer que la loi de X est déterminée par E[Xk] pour k ∈ {0, . . . , n− 1}.

Exercice 8: ** Somme de deux lois de Poisson

Soit X et Y deux variables aléatoires indépendantes suivant des lois de Poisson de paramètre
respectif λ et µ. Déterminer la loi de Z = X + Y .

Exercice 9: *** Déterminer les moments

Soit p ∈]0, 1[ et soit X une variable aléatoire à valeurs dans N dont la loi est donnée par :

P (X = k) = a

Ç
n+ k

k

å
pk pour tout k ∈ N.

En employant la fonction génératrice de X, déterminer a et calculer l’espérance et la variance de
X.

Exercice 10: ** Fonctions génératrices des lois usuelles

Déterminer les fonctions génératrices des lois suivantes :
1. loi uniforme sur J1, nK
2. loi binomiale
3. loi de Poisson
4. loi géométrique

Exercice 11: *** Somme Poisonnienne de Bernoulli

Si N suit une loi de Poisson de paramètre λ et les Xi suivent des lois de Bernoulli de paramètre
p, montrer que S =

∑N
i=1Xi qui suit une loi de Poisson de paramètre pλ.
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